A Compositional Analysis Framework for Hierarchical and Partitioned Real-Time Systems

Insup Lee
PRECISE Center
Department of Computer and Information Science
University of Pennsylvania

June 2, 2009

AFOSR FA9550-07-1-0216 (PM: Dr. David Luginbuhl)
Motivation and Goal

• Embedded systems are becoming complex, networked, and large-scale.
• Embedded systems have many para-functional aspects:
 – physically coupled, real-time, location-aware, resource-constrained, heterogeneous, and etc.
 – real-time: required to react to events or complete tasks in specific time
 – resource-constrained: subject to operating with scarce resources, such as processor power, memory, power, bandwidth
• Component-based approach for the design of large complex systems
 – Interoperability, predictability, scalability,…
• Goal: resource-sensitive component framework
 – Hierarchical, compositional, incremental
Component technologies

• Enable component-based development
 – abstract components through interfaces
 • Interfaces preserve intellectual property
 – compose components preserving compositionality
 – facilitate modularity, portability, and reusability
• Traditional focus: functional, behavioral aspects
 – need: non-functional aspects, such as timeliness, reliability, safety, and resource use
ARINC 653: Schedulability

Partition 1

\[P_{11}, \ldots, P_{1m_1} \]

Partition 2

\[P_{21}, \ldots, P_{1m_2} \]

\[\ldots \]

Partition n

\[P_{n1}, \ldots, P_{nm_n} \]

Core module hardware

Process level schedules

Partition level schedule
Abstraction and Composition

• Abstraction Problem: abstract the real-time application as a component with an interface

• Compute the minimum real-time requirements necessary for guaranteeing the schedulability of a component
Abstraction and Composition

• Composition Problem: compose component-level properties into system-level (or next-level component) properties
Compositionality

- Compositionality:
 - system-level properties can be established by composing independently analyzed component-level properties

- Compositional reasoning based on assume/guarantee paradigm
 - components are combined to form a system such that properties established at the component-level still hold at the system level.

- Compositional schedulability analysis using the demand/supply bounds
 - Establish the system-level timing properties by combining component-level timing properties through interfaces
Resource Satisfiability Analysis

• Given a task set and a resource model, resource satisfiability analysis is to determine if, for every time,

\[
\text{resource demand}, \quad \text{which a task set needs under a scheduling algorithm} \leq (\text{minimum possible}) \text{ resource supply}
\]
Hierarchical Scheduling Framework

- Resource allocation from parent to child

- Notations
 - Leaf → C₁, C₂, C₃
 - Non-leaf → C₄, C₅
 - Root → C₅

ARINC 653 → Two-level hierarchical framework
OS Scheduler’s Viewpoint

- Digital Controller: $T_1(25,5)$
- Multimedia: $T_2(33,10)$
- Java Virtual Machine

Real-Time Task

Real-Time Demand
Resource Demand Models
Real-time demand composition

- Combine real-time requirements of multiple tasks into real-time requirement of a single task

EDF / RM
Non-composable periodic models?

• What are right abstraction levels for real-time components?
 (period, execution time)

• $P_1 = (p_1, e_1)$; e.g., (3,1)
• $P_2 = (p_2, e_2)$; e.g., (7,1)
• What is $P_1 \parallel P_2$?
 – $(\text{LCM}(p_1, p_2), e_1 \cdot n_1 + e_2 \cdot n_2)$; e.g., (21,10)
 where $n_1 \cdot p_1 = n_2 \cdot p_2 = \text{LCM}(p_1, p_2)$

• What is the problem?
 – beh(P_1) \parallel beh(P_2) = beh($P_1 \parallel P_2$)?

• Compositionality
 – $(P_1 \parallel P_2) \parallel P_3 = P \parallel P_3$, where $P = P_1 \parallel P_2$
Resource Demand Bound

- Resource demand bound during an interval of length \(t \)
 - \(dbf(W,A,t) \) computes the maximum possible resource demand that \(W \) requires under algorithm \(A \) during a time interval of length \(t \)

- Periodic task model \(T(p,e) \) [Liu & Layland, ’73]
 - characterizes the periodic behavior of resource demand with period \(p \) and execution time \(e \)
 - Ex: \(T(3,2) \)

![Graph showing resource demand over time](image)
Demand Bound - EDF

- For a periodic workload set $W = \{T_i(p_i, e_i)\}$,
 - $dbf(W, A, t)$ for EDF algorithm [Baruah et al., '90]

\[
dbf(W, EDF, t) = \sum_{T_i \in W} \left\lfloor \frac{t}{p_i} \right\rfloor \cdot e_i
\]
Demand-based Schedulability Analysis

- A periodic task set is schedulable under EDF over the periodic resource model $\Gamma(P,Q)$ if and only if
 \[\forall t > 0 \text{ dbf}(t) \leq t \leq \text{ lsbf}(t) \]

[Shin and Lee, 2003]
Demand bound revisited

- More than one resource model may be used
 - Consider only LSBF that intersect DBF
- An “optimal” choice from the component perspective may be globally unsuitable
Task (resource demand) representations
Resource Supply Models
Resource Modeling

- Dedicated resource: always available at full capacity

- Shared resource: not a dedicated resource
 - Time-sharing: available at some times
 - Non-time-sharing: available at fractional capacity
Resource Modeling

- **Time-sharing resources**
 - Bounded-delay resource model [Mok et al., ’01] characterizes a time-sharing resource w.r.t. a non-time-sharing resource
 - Periodic resource model \(\Gamma(\Pi,\Theta) \) [Shin & Lee, RTSS ’03] characterizes periodic resource allocations
 - EDP model [Easwaran et al., RTSS 07]
Resource Supply Bound

• Resource supply during an interval of length t
 – $sbf_R(t)$: the minimum possible resource supply by resource R over all intervals of length t

• For a single periodic resource model, i.e., $\Gamma(3,2)$
 – we can identify the worst-case resource allocation
Resource Supply Bound

• Resource supply during an interval of length t
 – $\text{sbf}_\Gamma(t)$: the minimum possible resource supply by resource R over all intervals of length t

• For a single periodic resource model $\Gamma(\Pi, \Theta)$

\[
\text{sbf}_\Gamma(t) = \begin{cases}
 t - (k + 1)(\Pi - \Theta) & \text{if } t \in [(k + 1)\Pi - 2\Theta, (k + 1)\Pi - \Theta] \\
 (k - 1)\Theta & \text{otherwise}
\end{cases}
\]
Resource Schedulability Analysis

- **Schedulability analysis** determines whether

 - resource demand, which a workload set requires under a scheduling algorithm
 ≤

 - resource supply, which available resources provide

 + workload
 + workload
 - scheduler
 + resource
Schedulability conditions

- $sbf_{\Gamma}(t)$: Supply bound function: Minimum resource supply of model Γ in any time interval of length t
- $lsbf_{\Gamma}(t)$: Linear lower bound of $sbf_{\Gamma}(t)$

\[
lxbf_{\Gamma}(t) = \Theta \left(t - \frac{2(\Pi - \Theta)}{\Theta} \right)
\]

- Bandwidth
- Starvation length
Schedulability conditions

Starvation length:
$2(\Pi - \Theta)$

Bandwidth:
Θ / Π

(slope of line)
The EDP Resource Model

- **Explicit Deadline Periodic resource**

- **Model:** $\Omega = (\Pi, \Theta, \Delta)$
 - Explicit deadline Δ
 - Θ resource units in Δ time units
 - Repeat supply every Π time units

- **Properties**
 - Periodic resource model is a EDP model with $\Delta = \Pi$
 - Maximum slack of EDP model depends on Θ and Δ for a fixed Π
 - Slack can be controlled using Δ without changing bandwidth of model (within limits)
 - Smaller bandwidth required to schedule the same component, when compared to periodic resource models
 - Improves precision of resource allocation
Supply bound function \((\text{sbf}_\Omega)\)

\[
\Gamma(5,3)
\]

Starvation length = 4

\[
\Omega(5,3,4)
\]

Starvation length = 3
Bandwidth optimal interface

• Given component C and period Π
 – Compute Θ and Δ

• We use bandwidth optimality
 – Minimizes resource bandwidth Θ/Π
 – Occurs when $\Delta=\Theta$ (*Theorem 3.2 in RTSS'07*)
Bandwidth optimal interface

\[\Omega' = (\Pi, \Theta, \Delta), \Delta > \Theta \]

minimum bandwidth for model \(\Omega' \)
Bandwidth optimal interface

\[\Omega = (\Pi, \Theta, \Theta) \]

\(\Theta \) can be reduced
Bandwidth optimal interface

\[\Omega = (\Pi, \Theta^*, \Theta^*) \]

bandwidth optimal model \(\Omega \)
Bandwidth-deadline optimal

- Choose interface with **Largest** Δ among all bandwidth optimal interfaces
 - Reduced demand for composition

- Interface generation procedure
 - Set $\Delta = \Theta$, compute $\Omega = (\Pi, \Theta^*, \Theta^*)$
 - Set $\Theta = \Theta^*$, compute $\Omega^* = (\Pi, \Theta^*, \Delta^*)$
Applying to ARINC 653

• 2-level hierarchical scheduler
 – Partitions scheduled among themselves at higher level
 – Processes within each partition scheduled at lower level

• Uniqueness of ARINC 653
 – Harmonic partition periods
 – Preemption and blocking overheads
 – Communication dependencies across partitions
 • Process workload (dbf) depends on parameters which in turn are determined by these dependencies

• Applying to real ARINC workloads obtained from Honeywell
 – Preliminary results showed an improvement of up to 300% in bandwidth, depending on period of interfaces for 5-6 partitions, with 1-5 tasks each

• Tool (called CARTS) development underway to handle more extensive workloads
Example: ARINC workload

• Process parameters: (O, J, T, C, D)
 – O = Offset, J = Jitter, T = Period, C = Worst-case execution time, D = Deadline
 – T, C, D from workload, O added speculatively

• Example 1
Partition 1: {(2,0,25,1.4,25), (3,0,50,3.9,50)}
Partition 2: {(0,0,50,2.8,50)}
Partition 3: {(0,0,50,1.4,50)}
Partition 4: {(3,0,25,1.1,25), (5,0,50,1.8,50), (11,0,100,2,100), (13,0,200,5.3,200)}
Partition 5: {(2,0,50,1.3,50), (14,0,200,1.5,200)}
Resource Supply Models

- ACSR+
 - Recurring branching resource supply model
 - Bounded-delay Resource model
 - Tree schedule
 - Cyclic Executive
 - EDP model
 - Periodic model
Incremental Analysis

Incremental analysis

R_3' should be same irrespective of order in which τ_2' and τ_4 are added

Associative composition guarantees incremental analysis
Multicore Processor Virtualization

1. Compositional analysis of hierarchical multiprocessor real-time systems, through component interfaces
2. Using virtualization to develop new component interface for multiprocessor platforms
Partitioned Scheduling

\[\tau_{x_1} \cup \tau_{x_2} \ldots \cup \tau_{x_m} = \tau \]

\[\tau_{x_i} \cap \tau_{x_j} = \emptyset \text{ for all } i \text{ and } j \]
Global Scheduling

Physical processors

Single task cluster

1 2 \ldots m

\tau
Multiprocessor Scheduling

- **Goal:** Optimal scheduling algorithms and their analysis techniques

- **Partitioned vs. Global Scheduling**
 - Shown using simulations [Baker05] that partitioned performs better
 - Exists task sets schedulable by global but not by any partitioned algorithm
 - EDF load bounds: \(1/2(m - (m-1)\delta_{\text{max}})[\text{partitioned}]\) vs. \((m - (m-1)\delta_{\text{max}})(1-\delta_{\text{max}})[\text{global}]\)

- **Our Approach:** Framework for development of scheduling algorithms that support general task-processor mappings through virtualization
Virtual Clustering Interface

\[\tau_{x_1} \cup \tau_{x_2} \cdots \cup \tau_{x_k} = \tau \]

\[\tau_{x_i} \cap \tau_{x_j} = \phi \text{ for all } i \text{ and } j \]
Virtual Clustering Interface

For each Γ_i, $m_i \leq m$ is maximum number of physical processors that can be assigned to Γ_i at any instant.

Physical processors

Virtual processors

Task clusters
Virtual Clustering

- Task set and number of processors
 - $\tau_1 = \tau_2 = \tau_3 = \tau_4 = (3, 2, 3)$, $\tau_5 = (6, 4, 6)$, and $\tau_6 = (6, 3, 6)$, $m=4$

- Schedule under clustered scheduling
 - τ_1, τ_2, τ_3 scheduled on processors 1 and 2
 - τ_4, τ_5, τ_6 scheduled on processors 3 and 4
Virtual Clusters

- Use platform virtualization to provide a trade-off between resource utilization and scheduling complexity

- **Cluster interface:** \((\Gamma, m)\)
 - \(\Gamma\) is the resource model, \(m\) is the maximum number of physical processors available

- **Inter-cluster scheduling is optimal**
Need for Multiprocessor Periodic Resource (MPR) model
Multiprocessor Periodic Resource (MPR) model

- $\Gamma = (\Pi, \Theta, m')$
 - Θ units of resource supply guaranteed in every Π time units, with concurrency at most m' in any time instant

- Consider $\Gamma = (5, 12, 3)$

- Why MPR model?
 - Periodicity enables transformation of MPR model to periodic tasks which can be scheduled using standard algorithms
Virtual Cluster-based Scheduling

1. Split task set τ into clusters $\tau_{x_1}, \ldots, \tau_{x_k}$

2. Abstract τ_{x_i} into MPR interface Γ_i (for cluster VC_i)

3. Transform each Γ_i into periodic tasks
 - Enables inter-cluster scheduler to schedule Γ_i
Summary on Virtual Clustering

• Virtual cluster-based multiprocessor scheduling
 – Transforms tasks from constrained to implicit deadline
 • Optimal inter-cluster scheduling techniques can be employed
 – Allows processor slack from one cluster to be used by another
 – Shows promise w.r.t. success of simple clustering techniques

• Open issues
 – Efficient clustering techniques for constrained and arbitrary deadline task systems
 • With an aim to solve the important open problem of optimal scheduling of arbitrary deadline periodic task systems
 – Including other resources such as caches
CARTS: Compositional Analysis of Real-Time Systems
Execution Demands for VM and OS Schedulers

OS Scheduler (EDF) (5,4.38)

- Digital Controller (25,5)
- Multimedia (33,10)

VM Scheduler (RM) (5,1.86)

- Task 1 (25,4)
- Task 2 (40,5)
System Modeling in CARTS

- Tree representation
System Modeling in CARTS

- XML representation

```xml
<system os_scheduled="EDF" min_period="5" max_period="5">
  <task name="Digital Controller" p="25" d="25" e="5"/>
  <task name="Multimedia" p="33" d="33" e="10"/>
  <component name="VM Scheduler" criticality="A" vmips="0" scheduler="RM" subtype="tasks" min_period="5" max_period="5">
    <task name="task1" p="25" d="25" e="4"/>
    <task name="task2" p="40" d="40" e="5"/>
  </component>
</system>
```
Analysis in CART

Analysis Result with EDP Algorithm

<table>
<thead>
<tr>
<th>Resource Model</th>
<th>Period: 5.0, Bandwidth: 4.141267123287672, Deadline: 4.185445524085139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processed Task Model</td>
<td>Period: 5.0, Execution Time: 4.141267123287672, Deadline: 5.044178400797468</td>
</tr>
</tbody>
</table>
CARTS

Supports

• Task & Resource Models
 – Periodic
 – Explicit Deadline Periodic (EDP)

• Scheduling Policies
 – Rate monotonic
 – Earlies Deadline First (EDF)
 – Others planned

• Open architecture

Features

• Editor for demand-supply XML files
• Tree representation of components and tasks
• Editing components/tasks in the tree
• Conversion from XML to tree representation and vice versa
• AADL output planned
Summary

• Periodic Resource Model
• Explicit Deadline Resource (EDP) Model
• Incremental Analysis
• Resource Optimality
• Virtual Clustering for Multicore Processors
• Toolset: CARTS
• Compositionality in Multimode Real-Time Systems
• Looking for Case Studies
References

- Hierarchical Scheduling Framework for Virtual Clustering of Multiprocessors, Insik Shin, Arvind Easwaran, Insup Lee, ECRTS, Prague, Czech Republic, July 2-4, 2008 (Runner-up in the best paper award)
- Robust and Sustainable Schedulability Analysis of Embedded Software, Madhukar Anand and Insup Lee, LCTES, Tucson, AZ, Jun 12-13, 2008

This work was supported in part by AFOSR, NSF and ONR.
Thank You!

Questions?