Scalable and Accurate Verification of Data Flow Systems

Cesare Tinelli
The University of Iowa
Overview

AFOSR Supported Research

Collaborations
- NYU (project partner)
- Chalmers University (research collaborator)
- Rockwell-Collins (end user)

Overall Objective
- Improve performance and scalability of techniques for verifying mission-critical embedded software
Overview

Scientific Approach
- Focus on synchronous data-flow systems
- Develop automated reasoning techniques and tools based on more powerful logic than propositional logic
- Develop modular and compositional verification methods and tools

Breakthrough Opportunities
- Use Satisfiability Modulo Theories (SMT) instead of SAT
- Exploit recent dramatic advances in SMT technology
- Reason about finite- as well as infinite-state systems
Formally Verifying Software Systems

Traditional main alternatives:

- **Deductive verification**
 Based on first- or higher-order logical calculi for theorem proving

- **Model checking**
 Based on automata or SAT techniques
Deductive Verification vs Model Checking

Deductive Verification

Pros
- Natural translation
- Unrestricted data types
- Arbitrary properties
- Favors proving validity

Cons
- Time consuming
- Expertise required
- May be hard to produce counterexamples

Model checking

Pros
- Fast
- Automatable
- Generates concrete counterexamples

Cons
- More complex translation
- Finite data types only
- Propositional properties
- Harder to prove validity
Main Idea of This Work

- **Middle-ground** approach

- **SMT-based** model checking:
 - Automatically translate system S and property P into a *first-order* logic with *built-in theories*
 - Try to prove or disprove P *automatically* with an *inductive* model checker/verifier
 - Use an **SMT solver** as the main reasoning engine
 - Verify *control* and *data* properties
Satisfiability Modulo Theories

- Lifting of SAT solving techniques to certain fragments of data type theories (linear arithmetic, arrays, lists, tuples, …)
- Uses efficient specialized reasoners to handle predicates with theory symbols (> , +, a[i], cons, …)
- SAT → SMT
 - Boolean formulas → quantifier free formulas over theories
 - More powerful than Boolean representation, but retains decidability and efficiency
 - More compact formulas, better scalability
 - More natural encodings for verification
This Research

Background

- Seminal work on **SAT-based temporal induction** at Chalmers University

 [Biesse & Claessen, Sheeran et al.]

Our contributions

- lifting to SMT case
- extension to infinite-state systems
- enhancements to induction method
- state-of-the-art SMT solver
Main Focus and Approach

- Consider reactive systems specifiable with synchronous dataflow languages

- Use SMT-based k-induction to verify safety properties (i.e., invariant functional properties) of transition systems

- For experimental evaluations, work with systems written in Lustre
Essence of Lustre Programs

- **Declarative** and deterministic
- System of **equational constraints between** input and output **streams**
- Each **stream** s of values of type τ is a function
 $$s : \mathbb{R} \rightarrow \tau$$
 that maps **instants to stream values**
node thermostat (a_temp, d_temp, marg: real) returns (cool, heat: bool)
let
 cool = (a_temp - d_temp) > marg ;
 heat = (a_temp - d_temp) < -marg ;
tel

node therm_control (actual: real; up, dn: bool) returns (heat, cool: bool)
var target, margin: real;
let
 margin = 1.5 ;
 desired = 21.0 -> if dn then (pre desired) - 1.0
 else if up then (pre desired) + 1.0
 else pre target ;
 (cool, heat) = thermostat (actual, desired, margin) ;
tel
From stream algebra constraints to temporal constraints

Stream constraints can be reduced to Boolean & arithmetic constraints over instantaneous configurations:

\[
\begin{align*}
\text{margin}(n) &= 1.5 \\
\text{target}(n) &= \text{ite}(n = 0, 70.0, \text{ite}(dn(n), \text{target}(n-1) - 1.0, \ldots)) \\
\text{cool}(n) &= (\text{actual}(n) - \text{target}(n)) > \text{margin}(n) \\
\text{heat}(n) &= (\text{actual}(n) - \text{target}(n)) < (-\text{margin}(n))
\end{align*}
\]

Crucial observation: SMT solvers can process this sort of constraints natively and efficiently
SMT Solvers

- SMT Solver: automatic engine for checking satisfiability/validity
- Formulas can encode transition systems and their properties
- Solver returns with:
 - Whether input formula is valid or not in the built-in theory
 - If so, a proof of validity
 - If not, a counter-model
Translation of

- a Lustre program \(L \) and
- a putative invariant property \(P \)

into set \(F \) of SMT formulas

SMT-based \(k \)-induction on \(F \) to prove or disprove \(P \) for \(L \)

Main enhancements:
- path compression
- abstraction
- invariant discovery
Our Verification Framework

- Translation of
 - a Lustre program \(L \) and
 - a putative invariant property \(P \)
 into set \(F \) of SMT formulas
- SMT-based \(k \)-induction on \(F \) to prove or disprove \(P \) for \(L \)
- Main enhancements:
 - path compression
 - abstraction
 - invariant discovery
Some Basic Terminology

- Q: a state space
- S: a state transition system over Q
- I: set of S’s initial states
- T: S’s transition relation

- **Reachable states**: all initial states of S and all T-successors of reachable states
A Classification of Functional Properties

- **Valid:**
 - satisfied by all states in Q

- **Inductive:**
 - $I(s_0) \implies P(s_0)$
 - $P(s_n), T(s_n, s_{n+1}) \implies P(s_{n+1})$

- **k-inductive:**
 - $I(s_0), T(s_0, s_1), \ldots, T(s_{k-1}, s_k) \implies P(s_0), \ldots, P(s_k)$
 - $T(s_n, s_{n+1}), \ldots, T(s_{n+k}, s_{n+k+1}), P(s_n), \ldots, P(s_{n+k}) \implies P(s_{n+k+1})$

- **Invariant:**
 - satisfied by all reachable states of S
Proving Invariants by k-induction

- **Automatable when**
 1. I, T, P can be encoded in some formal logic \mathcal{L}
 2. Implication (\Rightarrow) in \mathcal{L} can be checked efficiently

- **Challenges**
 - **Accuracy**
 - encoding of T is often an over-approximation
 - k-induction is incomplete for proving invariant in infinite-state systems
 - **Scalability**
 - size of state space
 - size and complexity of resulting formulas
Improving Accuracy: Invariant Discovery

Problem
If P is invariant for S but k-induction fails to show it then $T(s, s')$ holds for some unreachable state s

Possible Solution
1. Find some other invariant $\text{Inv}(x)$ for S
2. Strengthen $T(x, y)$ into $T'(x, y) = T(x, y) \land \text{Inv}(x)$
3. Try again with T'
A Novel Invariant Discovery Method

1. Let $R(x,y)$ be a formula standing for a binary relation over program values (ex: $x \Rightarrow y$, $x = y$, $x < y$, $x - y < 10$, …)

2. Determine heuristically a finite set U of relevant terms (e.g., including selected terms from T)

3. Find a subset C of

 $\{ (t_1, t_2) \in U \times U \mid R(t_1, t_2) \text{ is invariant} \}$

4. Let $\text{Inv} = \wedge\{ R(t_1, t_2) \mid (t_1, t_2) \in C \}$
A Novel Invariant Discovery Method

1. **Challenges:**
 - \(C \) should
 - be computed quickly
 - be fairly small
 - exclude pairs \((t_1, t_2)\) with \(R(t_1, t_2)\) valid

2. Find a subset \(C \) of
 \[
 \{ (t_1, t_2) \in U \times U \mid R(t_1, t_2) \text{ is invariant} \}
 \]

3. Let \(Inv = \wedge \{ R(t_1, t_2) \mid (t_1, t_2) \in C \} \)
Initial Results

- Developed **efficient method** for computing set C **when**
 - R is over a basic data type (e.g., bool, int, real)
 - R is reflexive, transitive and anti-symmetric (e.g., \Rightarrow, \leq, $=$, \ldots)
- Properties of R allow a **compact encoding** (DAG) of C
- Method **capitalizes on** ability of **SMT solvers** to find counter-models
Initial Evaluation (=>)

- Considered ~600 Lustre benchmarks (program + property)
- All properties conjectured to hold
- Timeout: 120s / benchmark
- Kind with Yices SMT solver proves
 - 369 (61%) directly
 - 448 (75%) with the aid of separately discovered invariants
- Average proving times:
 - without invariants: 0.06s
 - with invariants: 0.29s
Invariant Discovery Statistics

- Timeout limit: 300s
- Timeouts: 17
- # of invariants/benchmark
 - Min: 0
 - Max: 168
 - Average: 8

- Generation time
 - Total: 130m
 - Average: 13s
Conclusion

- Automated verification of safety properties of synchronous data-flow systems specified in Lustre
- Translation of Lustre programs + properties into suitable FOL fragment with built-in theories
- Use of off-the-shelf SMT solvers to prove properties by k-induction methods
 - Enhanced with path compression, abstraction, & invariant discovery techniques
- Lustre verifier highly competitive with previous tools (Lesar, Luke, SAL)
Future Work

- Incorporation of in-house new SMT solver, CVC4, into Lustre verifier
- More powerful abstraction thanks to new CVC4 features
- Additional invariant discovery methods
- Modular verification
- Improved support for Lustre programs with non-linear arithmetic
Thank you