A Timed Approximation based Compositional Approach towards Formally Verified Aircraft Control Protocols

Pavithra Prabhakar

IMDEA Software Institute & Kansas State University

Safe and Secure Systems and Software Symposium
Motivation

Aircraft control protocols are multi-agent hybrid systems

- Aircraft landing protocols
- Aircraft collision avoidance protocols
Aircraft control protocols are multi-agent hybrid systems

- Aircraft landing protocols
- Aircraft collision avoidance protocols

Current approaches in hybrid systems theory for safety analysis

- Reachable set computation based on fixpoint iterations [SpaceEx, d/dt, Flow*]
- Finite state abstraction based approaches [Predicate abstraction, CEGAR]
Motivation

Aircraft control protocols are multi-agent hybrid systems

- Aircraft landing protocols
- Aircraft collision avoidance protocols

Current approaches in hybrid systems theory for safety analysis

- Reachable set computation based on fixpoint iterations [SpaceEx, d/dt, Flow*]
- Finite state abstraction based approaches [Predicate abstraction, CEGAR]

Shortcomings

- Monolithic view for analysis doesn’t work — leads to the state-space explosion problem
- Symbolic and abstraction based approaches don’t suffice — don’t have enough information for compositional analysis
Motivation

Aircraft control protocols are multi-agent hybrid systems

- Aircraft landing protocols
- Aircraft collision avoidance protocols

Current approaches in hybrid systems theory for safety analysis

- Reachable set computation based on fixpoint iterations [SpaceEx, d/dt, Flow*]
- Finite state abstraction based approaches [Predicate abstraction, CEGAR]

Shortcomings

- Monolithic view for analysis doesn’t work — leads to the state-space explosion problem
- Symbolic and abstraction based approaches don’t suffice — don’t have enough information for compositional analysis

Time is crucial!
Agenda

Safety verification of networks of hybrid systems
Agenda

Safety verification of networks of hybrid systems

Develop a compositional approach
Safety verification of networks of hybrid systems

Develop a compositional approach

Timed Approximations

- Bounded Error Approximations based Verification (BEAVER)
- Hybridization based CEGAR (HARE: Hybrid Abstraction Refinement Engine)
Bounded Error Approximations
Air traffic collision avoidance protocol

\[\mathbf{x} = (x_1, x_2): \text{ position of the airplane} \]
\[\mathbf{d} = (d_1, d_2): \text{ velocity of the airplane} \]
Air traffic collision avoidance protocol

The aircraft maintain a minimum distance between them always.

Minimum separation

$x = (x_1, x_2)$: position of the airplane

d = (d_1, d_2): velocity of the airplane
Air traffic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum distance between them always

\[\mathbf{x} = (x_1, x_2): \text{position of the airplane} \]
\[\mathbf{d} = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum distance between them always

\[x = (x_1, x_2): \text{position of the airplane} \]
\[d = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum distance between them always

\[x = (x_1, x_2): \text{position of the airplane} \]
\[d = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

\[\mathbf{x} = (x_1, x_2) : \text{position of the airplane} \]
\[\mathbf{d} = (d_1, d_2) : \text{velocity of the airplane} \]

Minimum separation

The aircraft maintain a minimum distance between them always
Air traffic collision avoidance protocol

The aircraft maintain a minimum distance between them always.

\[x = (x_1, x_2): \text{position of the airplane} \]
\[d = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum distance between them always

\[x = (x_1, x_2): \text{position of the airplane} \]
\[d = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

The aircraft maintain a minimum distance between them always.

\[\mathbf{x} = (x_1, x_2): \text{position of the airplane} \]
\[\mathbf{d} = (d_1, d_2): \text{velocity of the airplane} \]
Air traffic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum distance between them always

\[
\mathbf{x} = (x_1, x_2): \text{ position of the airplane}
\]

\[
\mathbf{d} = (d_1, d_2): \text{ velocity of the airplane}
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{d}_1 \\
\dot{d}_2
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\omega & 0 \\
0 & 0 & 0 & -\omega
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
d_1 \\
d_2
\end{bmatrix}
\]

\(\omega: \text{ the angular velocity}\)
Air traffic collision avoidance protocol

\[\mathbf{x} = (x_1, x_2): \text{position of the airplane} \]
\[\mathbf{d} = (d_1, d_2): \text{velocity of the airplane} \]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{d}_1 \\
\dot{d}_2 \\
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\omega & 0 \\
0 & 0 & \omega & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
d_1 \\
d_2 \\
\end{bmatrix}
\]

\(\omega: \text{the angular velocity} \)

Minimum separation

The aircraft maintain a minimum distance between them always

\[\| \mathbf{x} - \mathbf{y} \| \leq p \]
\[c = x + \lambda d = y + \lambda e \]
\[\| \mathbf{x} - c \| = \sqrt{3}r \]

\[(r\omega)^2 = \| \mathbf{d} \|^2 \]
\[x^0 := x, \quad d^0 := d \]

\(\omega := * \)

collision detection & negotiation

parallel to its initial direction

reach inner circle

\(\omega := -\omega \)

\[\omega := 0 \]
\[x + \lambda_2 \mathbf{d} = x^0 + \lambda_1 d^0 \]
Reach set computation based Safety verification

Post computation problem:

\[
\begin{align*}
\dot{x} &= f(x) \\
\Phi_f(x_0, t) &= \ \text{\(\Phi_f(x_0, t)\)}
\end{align*}
\]
Reach set computation based Safety verification

Post computation problem:

<table>
<thead>
<tr>
<th>\dot{x} = f(x)</th>
<th>\Phi f(x_0, t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $f(x) = c$, $\Phi(x_0, t) = x_0 + ct$</td>
<td></td>
</tr>
<tr>
<td>If $f(x) = Ax$, $\Phi(x_0, t) = e^{At}x_0$</td>
<td></td>
</tr>
</tbody>
</table>
Reach set computation based Safety verification

Post computation problem:

\[
\begin{align*}
\dot{x} &= f(x) \\
\Phi_f(x_0, t) &=
\begin{cases}
 f(x) = c, & \Phi(x_0, t) = x_0 + ct \\
 f(x) = Ax, & \Phi(x_0, t) = e^{At}x_0
\end{cases}
\end{align*}
\]

\[Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \} \]
Reach set computation based Safety verification

Post computation problem:

\[\dot{x} = f(x) \]
\[\Phi_f(x_0, t) \]

If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)

If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \} \]

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[
\dot{x} = f(x) \quad \Phi_f(x_0, t)
\]

If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)

If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[
Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \}
\]

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[\dot{x} = f(x) \]
\[\Phi_f(x_0, t) \]

If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)

If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \} \]

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking

Class of Continuous Dynamics

Complexity of Verification

FSM

TIMED

\[\dot{x} = 1 \]
Reach set computation based Safety verification

Post computation problem:

\[
\begin{align*}
\dot{x} &= f(x) \\
\Phi_f(x_0, t) &= \begin{cases}
& x_0 + ct \quad \text{if } f(x) = c, \\
& e^{At}x_0 \quad \text{if } f(x) = Ax,
\end{cases}
\end{align*}
\]

Post_f(X_0, T) = \{ x | x_0 \in X_0, \Phi_f(x_0, t) \}

Safety verification
- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[
\dot{x} = f(x) \\
\Phi_f(x_0, t)
\]

If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)

If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[\text{Post}_f(X_0, T) = \{x \mid x_0 \in X_0, \Phi_f(x_0, t)\}\]

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking

Complexity of Verification

Class of Continuous Dynamics

Exponential \(\dot{x} = 1 \) RECTANGULAR

FSM TIMED
Reach set computation based Safety verification

Post computation problem:

\[
\begin{align*}
\dot{x} &= f(x) \\
\Phi_f(x_0, t) &= \begin{cases}
 x_0 + ct & \text{if } f(x) = c \\
 e^{At} x_0 & \text{if } f(x) = Ax
\end{cases}
\end{align*}
\]

\[Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \}\]

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[
\dot{x} = f(x) \\
\Phi_f(x_0, t)
\]

If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)

If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[
Post_f(X_0, T) = \{x \mid x_0 \in X_0, \Phi_f(x_0, t)\}
\]

Complexity of Verification

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[
\begin{align*}
\dot{x} &= f(x) \\
\Phi_f(x_0, t) &= \\
\text{If } f(x) = c, \Phi(x_0, t) &= x_0 + ct \\
\text{If } f(x) = Ax, \Phi(x_0, t) &= e^{At}x_0
\end{align*}
\]

\[
Post_f(X_0, T) = \{ x | x_0 \in X_0, \Phi_f(x_0, t) \}
\]

Complexity of Verification

Class of Continuous Dynamics

Safety verification

- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking
Reach set computation based Safety verification

Post computation problem:

\[\dot{x} = f(x) \]
\[\Phi_f(x_0, t) \]
If \(f(x) = c \), \(\Phi(x_0, t) = x_0 + ct \)
If \(f(x) = Ax \), \(\Phi(x_0, t) = e^{At}x_0 \)

\[Post_f(X_0, T) = \{ x \mid x_0 \in X_0, \Phi_f(x_0, t) \} \]

Safety verification:
- State-space exploration based on discrete and continuous post operation
- Intersection with guards, emptiness checking

Approximation is a must:
Satisfiability of the theory of reals with exponentiation is an open problem
Approximations for linear dynamical systems

Approximate reach set computation

\[\Phi(x_0, t) \]

Compute an \(\epsilon \) over-approximation \(R \)

\[\text{Post}_f(X_0, T) \subseteq R \]
\[\subseteq B_\epsilon(\text{Post}_f(X_0, T)) \]
Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

$$Post_f(X_0, T) \subseteq R \subseteq B_\epsilon(Post_f(X_0, T))$$
Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

$$Post_f(X_0, T) \subseteq R \subseteq B_\epsilon(Post_f(X_0, T))$$

Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

\[\text{Post}_f(X_0, T) \subseteq R \subseteq B_\epsilon(\text{Post}_f(X_0, T)) \]
Approximations for linear dynamical systems

Approximate reach set computation

\[\Phi(x_0, t) \]

\[R \]

\[x_0 \]

\[X_0 \]

Compute an \(\epsilon \) over-approximation \(R \)

\[\text{Post}_f(X_0, T) \subseteq R \]

\[\subseteq B_\epsilon(\text{Post}_f(X_0, T)) \]

Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

$$Post_f(X_0, T) \subseteq R \subseteq B_\epsilon(\text{Post}_f(X_0, T))$$
Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

$$Post_f(X_0, T) \subseteq R \subseteq B_\epsilon(Post_f(X_0, T))$$

Approximations for linear dynamical systems

Approximate reach set computation

Compute an ϵ over-approximation R

\[
Post_f(X_0, T) \subseteq R \subseteq B_\epsilon(Post_f(X_0, T))
\]

- Data structure investigated — Polyhedra [Dang, Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes, Support functions [Girard, Guernic]

A dynamic algorithm for approximate flow computations. Pavithra Prabhakar and Mahesh Viswanathan.
Parameterized linear systems

Parameterized linear system

\[\dot{x} = Ax \]

\[x_0 \in X_0, t \in [0, T] \]

\[A \in \Omega \]
Parameterized linear systems

Parameterized linear system

\[\dot{x} = Ax \]
\[x_0 \in X_0, \, t \in [0, T] \]
\[A \in \Omega \]

Related work:
Approximate the state transition matrices [Althoff et al]:
\[\mathcal{M}(\delta) = \{ e^{A\delta} \mid A \in \Omega \} \]
Not straightforward to compute the sampling interval for a given error tolerance
Parameterized linear systems

\[\dot{x} = Ax \]
\[x_0 \in X_0, \ t \in [0, T] \]
\[A \in \Omega \]

Main idea:

- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points

Related work:

Approximate the state transition matrices [Althoff et al]:

\[\mathcal{M}(\delta) = \{ e^{A\delta} \mid A \in \Omega \} \]

Not straightforward to compute the sampling interval for a given error tolerance
Parameterized linear systems

Parameterized linear system

\[\dot{x} = Ax \]
\[x_0 \in X_0, \ t \in [0, T] \]
\[A \in \Omega \]

Related work:

Approximate the state transition matrices [Althoff et al]:

\[M(\delta) = \{ e^{A\delta} | A \in \Omega \} \]

Not straightforward to compute the sampling interval for a given error tolerance

Main idea:

- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points
Parameterized linear systems

Main idea:
- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points

For $\omega \in [\omega_1, \omega_2]$ and $t \in [t_1, t_2]$,

$$\hat{\Phi}(x_0, \omega, t) = \left[\beta \{ \alpha e^{\omega_1 t_1} + (1 - \alpha) e^{\omega_1 t_2} \} + (1 - \beta) \{ \alpha e^{\omega_2 t_1} + (1 - \alpha) e^{\omega_2 t_2} \} \right] x_0$$

where $\alpha = \frac{t - t_2}{t_1 - t_2}$ and $\beta = \frac{\omega - \omega_1}{\omega_1 - \omega_2}$

$$\Phi(x_0, \omega, t) = e^{\omega t} x_0$$
Parameterized linear systems

Main idea:

- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points

For $\omega \in [\omega_1, \omega_2]$ and $t \in [t_1, t_2]$,

$$\hat{\Phi}(x_0, \omega, t) = \left[\beta \{ \alpha e^{\omega_1 t_1} + (1 - \alpha) e^{\omega_1 t_2} \} + (1 - \beta) \{ \alpha e^{\omega_2 t_1} + (1 - \alpha) e^{\omega_2 t_2} \} \right] x_0$$

where $\alpha = \frac{t - t_2}{t_1 - t_2}$ and $\beta = \frac{\omega - \omega_1}{\omega_1 - \omega_2}$

$$\Phi(x_0, \omega, t) = e^{\omega t} x_0$$
Parameterized linear systems

Main idea:
- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points

For $\omega \in [\omega_1, \omega_2]$ and $t \in [t_1, t_2]$,

$$\hat{\Phi}(x_0, \omega, t) = \left[\beta \{ \alpha e^{\omega_1 t_1} + (1 - \alpha) e^{\omega_1 t_2} \} + (1 - \beta) \{ \alpha e^{\omega_2 t_1} + (1 - \alpha) e^{\omega_2 t_2} \} \right] x_0$$

where $\alpha = \frac{t - t_2}{t_1 - t_2}$ and $\beta = \frac{\omega - \omega_1}{\omega_1 - \omega_2}$
Parameterized linear systems

Main idea:
- Sample both the parameter space and the time domain
- Construct a piecewise bilinear function interpolating the values at the sample points

For $\omega \in [\omega_1, \omega_2]$ and $t \in [t_1, t_2]$,

$$\hat{\Phi}(x_0, \omega, t) = \left[\beta \{ \alpha e^{\omega_1 t_1} + (1 - \alpha)e^{\omega_1 t_2} \} + (1 - \beta) \{ \alpha e^{\omega_2 t_1} + (1 - \alpha)e^{\omega_2 t_2} \} \right] x_0$$

where $\alpha = \frac{t-t_2}{t_1-t_2}$ and $\beta = \frac{\omega-\omega_1}{\omega_1-\omega_2}$

Bound the precision of approximation:
- Finding the δ corresponding to an ϵ

$$\max \{ \delta \| \Omega \| e^{\delta \| \Omega \| T}, \delta T e^{\delta T} \} \leq \frac{\epsilon}{4e \| \Omega \| T}$$
BEAVER: Bounded Error Approximation based VERification

Parameterized Linear Hybrid Automaton

Bounded error approximation

Bilinear expressions

SMT formula construction

SMT formula

Safety property

SMT formula verification

Yes/No
BEAVER: Bounded Error Approximation based VERification

Parameterized Linear Hybrid Automaton

- Bounded error approximation
- Bilinear expressions
- SMT formula construction
- SMT formula
- SMT formula verification

Safety property

Yes/No
\[\varphi_{\text{exec}}^{i,\varepsilon}(x_i, t_i) = \varphi_{\text{free}}^{i,\varepsilon} \land \varphi_{\text{entry}}^{i,\varepsilon} \land \varphi_{\text{circ}}^{i,\varepsilon} \land \varphi_{\text{exit}}^{i,\varepsilon} \]
BEAVER: Bounded Error Approximation based VERification

Parameterized Linear Hybrid Automaton

Bounded error approximation

Bilinear expressions

SMT formula construction

SMT formula

SMT formula verification

Yes/No

Parameterized Linear Hybrid Automaton

Bounded error approximation

Bilinear expressions

SMT formula construction

SMT formula

SMT formula verification

Yes/No

\[\varphi_{\text{exec}}^{i,\epsilon}(x_i, t_i) = \varphi_{\text{free}}^{i,\epsilon} \land \varphi_{\text{entry}}^{i,\epsilon} \land \varphi_{\text{circ}}^{i,\epsilon} \land \varphi_{\text{exit}}^{i,\epsilon} \]

\[\varphi_{\text{safe}}^{\epsilon} = \neg \exists t [\varphi_{\text{exec}}^{1,\epsilon}(x_1, t) \land \varphi_{\text{exec}}^{2,\epsilon}(x_2, t) \land \|x_1 - x_2\| \leq d_{\text{sep}} + 2\epsilon] \]
BEAVER: Bounded Error Approximation based VERification

Parameterized Linear Hybrid Automaton → Bounded error approximation → SMT formula construction

Bilinear expressions → SMT formula construction

SMT formula → SMT formula verification → Yes/No

BEAVER

\[
\varphi_{\text{exec}}^{i,\epsilon}(x_i, t_i) = \varphi_{\text{free}}^{i,\epsilon} \land \varphi_{\text{entry}}^{i,\epsilon} \land \varphi_{\text{circ}}^{i,\epsilon} \land \varphi_{\text{exit}}^{i,\epsilon}
\]

\[
\varphi_{\text{safety}}^{\epsilon} = \neg \exists t \left[\varphi_{\text{exec}}^{1,\epsilon}(x_1, t) \land \varphi_{\text{exec}}^{2,\epsilon}(x_2, t) \land \|x_1 - x_2\| \leq d_{\text{sep}} + 2\epsilon \right]
\]

Main highlight of BEAVER — can perform compositional verification
Analysis results

<table>
<thead>
<tr>
<th>#Aircraft</th>
<th>#locations</th>
<th>epsilon</th>
<th>Time Approx</th>
<th>Time Create SMT</th>
<th>Time Verify (in sec)</th>
<th>Total Time (in seconds)</th>
<th>SMT result</th>
<th>KeYmaera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>0.66</td>
<td>1.53</td>
<td>2.73</td>
<td>4.92</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>1.30</td>
<td>1.55</td>
<td>10.35</td>
<td>13.20</td>
<td>Unsat</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>15</td>
<td>0.67</td>
<td>1.54</td>
<td>11.44</td>
<td>13.65</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>1.29</td>
<td>1.52</td>
<td>11.69</td>
<td>14.50</td>
<td>Unsat</td>
<td>253.6</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>15</td>
<td>0.82</td>
<td>1.56</td>
<td>12.36</td>
<td>14.74</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>8</td>
<td>1.68</td>
<td>1.55</td>
<td>14.42</td>
<td>17.65</td>
<td>Unsat</td>
<td>382.9</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>15</td>
<td>0.95</td>
<td>1.50</td>
<td>40.81</td>
<td>43.26</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>8</td>
<td>2.05</td>
<td>1.57</td>
<td>35.23</td>
<td>38.85</td>
<td>Unsat</td>
<td>1882.9</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>15</td>
<td>1.24</td>
<td>1.52</td>
<td>49.66</td>
<td>52.42</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>8</td>
<td>2.70</td>
<td>1.55</td>
<td>51.33</td>
<td>55.58</td>
<td>Unsat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>15</td>
<td>1.68</td>
<td>1.56</td>
<td>115.52</td>
<td>118.76</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>8</td>
<td>3.80</td>
<td>1.61</td>
<td>96.18</td>
<td>101.59</td>
<td>Unsat</td>
<td>—</td>
</tr>
</tbody>
</table>
Analysis results

<table>
<thead>
<tr>
<th>#Aircraft</th>
<th>#locations</th>
<th>epsilon</th>
<th>Time Approx</th>
<th>Time Create SMT</th>
<th>Time Verify (in sec)</th>
<th>Total Time (in seconds)</th>
<th>SMT result</th>
<th>KeYmaera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>0.66</td>
<td>1.53</td>
<td>2.73</td>
<td>4.92</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>1.30</td>
<td>1.55</td>
<td>10.35</td>
<td>13.20</td>
<td>Unsat</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>15</td>
<td>0.67</td>
<td>1.54</td>
<td>11.44</td>
<td>13.65</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>1.29</td>
<td>1.52</td>
<td>11.69</td>
<td>14.50</td>
<td>Unsat</td>
<td>253.6</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>15</td>
<td>0.82</td>
<td>1.56</td>
<td>12.36</td>
<td>14.74</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>8</td>
<td>1.68</td>
<td>1.55</td>
<td>14.42</td>
<td>17.65</td>
<td>Unsat</td>
<td>382.9</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>15</td>
<td>0.95</td>
<td>1.50</td>
<td>40.81</td>
<td>43.26</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>8</td>
<td>2.05</td>
<td>1.57</td>
<td>35.23</td>
<td>38.85</td>
<td>Unsat</td>
<td>1882.9</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>15</td>
<td>1.24</td>
<td>1.52</td>
<td>49.66</td>
<td>52.42</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>8</td>
<td>2.70</td>
<td>1.55</td>
<td>51.33</td>
<td>55.58</td>
<td>Unsat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>15</td>
<td>1.68</td>
<td>1.56</td>
<td>115.52</td>
<td>118.76</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>8</td>
<td>3.80</td>
<td>1.61</td>
<td>96.18</td>
<td>101.59</td>
<td>Unsat</td>
<td>—</td>
</tr>
</tbody>
</table>
Analysis results

<table>
<thead>
<tr>
<th>#Aircraft</th>
<th>#locations</th>
<th>epsilon</th>
<th>Time Approx</th>
<th>Time Create SMT</th>
<th>Time Verify (in sec)</th>
<th>Total Time (in seconds)</th>
<th>SMT result</th>
<th>KeYmaera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>0.66</td>
<td>1.53</td>
<td>2.73</td>
<td>4.92</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>1.30</td>
<td>1.55</td>
<td>10.35</td>
<td>13.20</td>
<td>Unsat</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>15</td>
<td>0.67</td>
<td>1.54</td>
<td>11.44</td>
<td>13.65</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>1.29</td>
<td>1.52</td>
<td>11.69</td>
<td>14.50</td>
<td>Unsat</td>
<td>253.6</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>15</td>
<td>0.82</td>
<td>1.56</td>
<td>12.36</td>
<td>14.74</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>8</td>
<td>1.68</td>
<td>1.55</td>
<td>14.42</td>
<td>17.65</td>
<td>Unsat</td>
<td>382.9</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>15</td>
<td>0.95</td>
<td>1.50</td>
<td>40.81</td>
<td>43.26</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>8</td>
<td>2.05</td>
<td>1.57</td>
<td>35.23</td>
<td>38.85</td>
<td>Unsat</td>
<td>1882.9</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>15</td>
<td>1.24</td>
<td>1.52</td>
<td>49.66</td>
<td>52.42</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>8</td>
<td>2.70</td>
<td>1.55</td>
<td>51.33</td>
<td>55.58</td>
<td>Unsat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>15</td>
<td>1.68</td>
<td>1.56</td>
<td>115.52</td>
<td>118.76</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>8</td>
<td>3.80</td>
<td>1.61</td>
<td>96.18</td>
<td>101.59</td>
<td>Unsat</td>
<td>—</td>
</tr>
</tbody>
</table>

- Our approach scales to more than 10 aircraft
Analysis results

<table>
<thead>
<tr>
<th>#Aircraft</th>
<th>#locations</th>
<th>epsilon</th>
<th>Time Approx</th>
<th>Time Create</th>
<th>Time Verify (in sec)</th>
<th>Total Time (in seconds)</th>
<th>SMT result</th>
<th>KeYmaera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>0.66</td>
<td>1.53</td>
<td>2.73</td>
<td>4.92</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>1.30</td>
<td>1.55</td>
<td>10.35</td>
<td>13.20</td>
<td>Unsat</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>15</td>
<td>0.67</td>
<td>1.54</td>
<td>11.44</td>
<td>13.65</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>1.29</td>
<td>1.52</td>
<td>11.69</td>
<td>14.50</td>
<td>Unsat</td>
<td>253.6</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>15</td>
<td>0.82</td>
<td>1.56</td>
<td>12.36</td>
<td>14.74</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>8</td>
<td>1.68</td>
<td>1.55</td>
<td>14.42</td>
<td>17.65</td>
<td>Unsat</td>
<td>382.9</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>15</td>
<td>0.95</td>
<td>1.50</td>
<td>40.81</td>
<td>43.26</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>8</td>
<td>2.05</td>
<td>1.57</td>
<td>35.23</td>
<td>38.85</td>
<td>Unsat</td>
<td>1882.9</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>15</td>
<td>1.24</td>
<td>1.52</td>
<td>49.66</td>
<td>52.42</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>8</td>
<td>2.70</td>
<td>1.55</td>
<td>51.33</td>
<td>55.58</td>
<td>Unsat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>15</td>
<td>1.68</td>
<td>1.56</td>
<td>115.52</td>
<td>118.76</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>8</td>
<td>3.80</td>
<td>1.61</td>
<td>96.18</td>
<td>101.59</td>
<td>Unsat</td>
<td>—</td>
</tr>
</tbody>
</table>

- Our approach scales to more than 10 aircraft
- Scales better than existing approaches — Beaver (3 times) vs KeYmaera (7 times)
<table>
<thead>
<tr>
<th>#Aircraft</th>
<th>#locations</th>
<th>epsilon</th>
<th>Time Approx</th>
<th>Time Create SMT</th>
<th>Time Verify (in sec)</th>
<th>Total Time (in seconds)</th>
<th>SMT result</th>
<th>KeYmaera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>0.66</td>
<td>1.53</td>
<td>2.73</td>
<td>4.92</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>1.30</td>
<td>1.55</td>
<td>10.35</td>
<td>13.20</td>
<td>Unsat</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>15</td>
<td>0.67</td>
<td>1.54</td>
<td>11.44</td>
<td>13.65</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>1.29</td>
<td>1.52</td>
<td>11.69</td>
<td>14.50</td>
<td>Unsat</td>
<td>253.6</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>15</td>
<td>0.82</td>
<td>1.56</td>
<td>12.36</td>
<td>14.74</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>8</td>
<td>1.68</td>
<td>1.55</td>
<td>14.42</td>
<td>17.65</td>
<td>Unsat</td>
<td>382.9</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>15</td>
<td>0.95</td>
<td>1.50</td>
<td>40.81</td>
<td>43.26</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>8</td>
<td>2.05</td>
<td>1.57</td>
<td>35.23</td>
<td>38.85</td>
<td>Unsat</td>
<td>1882.9</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>15</td>
<td>1.24</td>
<td>1.52</td>
<td>49.66</td>
<td>52.42</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>8</td>
<td>2.70</td>
<td>1.55</td>
<td>51.33</td>
<td>55.58</td>
<td>Unsat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>15</td>
<td>1.68</td>
<td>1.56</td>
<td>115.52</td>
<td>118.76</td>
<td>Sat</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1000576</td>
<td>8</td>
<td>3.80</td>
<td>1.61</td>
<td>96.18</td>
<td>101.59</td>
<td>Unsat</td>
<td>—</td>
</tr>
</tbody>
</table>

- Our approach scales to more than 10 aircraft
- Scales better than existing approaches — Beaver (3 times) vs KeYmaera (7 times)
- We ignore the error in computation of the value of the solution at the sample points
Hybridization based CEGAR
Abstraction

Safety Analysis
Abstraction

Safety Analysis
Abstraction

Safety Analysis
Abstraction

Safety Analysis
Abstraction

Safety Analysis

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Diagram:

1 → 2 → 3
4 → 5 → 6
7 → 8 → 9
Abstraction

Safety Analysis
Abstraction

Safety Analysis
Safety Analysis

- Every trajectory corresponds to a path in the graph
Safety Analysis

+ Every trajectory corresponds to a path in the graph
+ Absence of a path from green to red node implies safety
Abstraction

Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety
Abstraction

Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety

The above system is safe
Abstraction

Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety

- The above system is safe
- The abstract graph has a counter-example
Abstraction

Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety

- The above system is safe
- The abstract graph has a counter-example
- Right abstractions are hard to find!
Refinement

Safety Analysis
- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety
- Refine by analyzing the abstract counter-example

- The above system is safe
- The abstract graph has a counter-example
- Right abstractions are hard to find!
Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety
- Refine by analyzing the abstract counter-example

The above system is safe
- The abstract graph has a counter-example
- Right abstractions are hard to find!
Refinement

Safety Analysis

- Every trajectory corresponds to a path in the graph
- Absence of a path from green to red node implies safety
- Refine by analyzing the abstract counter-example

- The above system is safe
- The abstract graph has a counter-example
- Right abstractions are hard to find!
Counter-example guided abstraction refinement

- **CEGAR for discrete systems** [Kurshan et al. 93, Clarke et al. 00, Ball et al. 02]
- **CEGAR for hybrid systems by discrete abstractions** [Alur et al. 03, Clarke et al. 03]
Finite State Abstractions

- **Main challenges**
 - Constructing abstractions — requires reachable set computation
 - The abstractions are too coarse for compositional verification
Finite State Abstractions

- **Main challenges**
 - Constructing abstractions — requires reachable set computation
 - The abstractions are too coarse for compositional verification
Finite State Abstractions

Main challenges

- Constructing abstractions — requires reachable set computation
- The abstractions are too coarse for compositional verification
Finite State Abstractions

- **Main challenges**
 - Constructing abstractions — requires reachable set computation
 - The abstractions are too coarse for compositional verification
Hybridization based CEGAR

Abstract a hybrid system by another hybrid system
Hybridization based CEGAR

Abstract a hybrid system by another hybrid system

Linear dynamics:

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix}
\]

Overview:

- Divide the state-space into finite number of regions
- Approximate the dynamics in each of the regions by simpler dynamics
Hybridization based CEGAR

Abstract a hybrid system by another hybrid system

Linear dynamics:

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix}
\]

Overview:

- Divide the state-space into finite number of regions
- Approximate the dynamics in each of the regions by simpler dynamics

Rectangular dynamics:

\[
\begin{array}{c}
(r_2, w_2) \\
(r_1, w_1)
\end{array}
\begin{array}{c}
\dot{x} \in [l_x, u_x] \\
\dot{y} \in [l_y, u_y]
\end{array}
\]

\[\max \ ax + by, \ x \in [r_1, r_2], \ y \in [w_1, w_2]\]
Hybridization based CEGAR

Abstract a hybrid system by another hybrid system

Linear dynamics:
\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
\]

Rectangular dynamics:
\[
(r_2, w_2) \\
\dot{x} \in [l_x, u_x] \\
\dot{y} \in [l_y, u_y] \\
(r_1, w_1)
\]

\[
\max \ ax + by, x \in [r_1, r_2], y \in [w_1, w_2]
\]

Overview:
- Divide the state-space into finite number of regions
- Approximate the dynamics in each of the regions by simpler dynamics

Features:
- Construction of abstraction simpler
- Model-checking is more involved
- Our refinement algorithm splits a region of the state-space partition in the abstraction
HARE: Hybrid Abstraction Refinement Engine

HARE: Hybrid Abstraction Refinement Engine

- The algorithm is sound — when the model-checker says yes, the system is safe
- Validation can be performed only approximately

Experimental results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Safety</th>
<th>Vars.</th>
<th>Locs.</th>
<th>Time</th>
<th>Safe</th>
<th>HARE</th>
<th>Time</th>
<th>Safe</th>
<th>PHAVer</th>
<th>HSolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank 1</td>
<td>Safe</td>
<td>3</td>
<td>3</td>
<td>< 1</td>
<td>Yes</td>
<td>721</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tank 2</td>
<td>Safe</td>
<td>3</td>
<td>3</td>
<td>< 1</td>
<td>Yes</td>
<td>763</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Satellite 1</td>
<td>Unsafe</td>
<td>4</td>
<td>64</td>
<td>88</td>
<td>No</td>
<td>16</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Satellite 2</td>
<td>Safe</td>
<td>4</td>
<td>100</td>
<td>< 1</td>
<td>Yes</td>
<td>270</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Satellite 3</td>
<td>Safe</td>
<td>4</td>
<td>576</td>
<td>< 1</td>
<td>Yes</td>
<td>267</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Satellite 4</td>
<td>Safe</td>
<td>4</td>
<td>1296</td>
<td>< 1</td>
<td>Yes</td>
<td>482</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Heater 01</td>
<td>Unsafe</td>
<td>3</td>
<td>4</td>
<td>< 1</td>
<td>No</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Heater 02</td>
<td>Unsafe</td>
<td>3</td>
<td>4</td>
<td>< 1</td>
<td>No</td>
<td>21</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nav 01</td>
<td>Safe</td>
<td>4</td>
<td>25</td>
<td>9</td>
<td>Yes</td>
<td>< 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nav 02</td>
<td>Safe</td>
<td>4</td>
<td>16</td>
<td>7</td>
<td>Yes</td>
<td>52</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nav 03</td>
<td>Safe</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>Yes</td>
<td>58</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nav 04</td>
<td>Safe</td>
<td>4</td>
<td>33</td>
<td>31</td>
<td>Yes</td>
<td>58</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nav 05</td>
<td>Safe</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>Yes</td>
<td>< 1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- HARE performs much better than SpaceEx, but slightly worse than PHAVer in terms of running time; HSolver always does worse than all other tools
- HARE proves safety on many more instances than SpaceEx, PHAVer
Compositional Analysis Using HARE

SATS: Small Airport Transportation Systems

- A new concepts where pilots interact with an automated centralized Airport Management Module (AMM) without ground controller
- Increase access to small airports with multiple landings and departures at the same time.
- Zones - holding, base, lateral entry, runway ...
- Flight rules - entry rules (vertical/lateral), descend, approach, landing ...
- AMM provides entry clearances, missed approach holding fixes, leader aircraft, ...

Safety concern: Maintain minimum separation
Compositional Analysis Using HARE

SATS: Small Airport Transportation Systems

- Each aircraft modelled as a rectangular hybrid automaton
- Abstractions involved variable dropping and scaling, location merging
- Abstract each hybrid automaton into a simpler one
- Decompose the counter-example and refine each of the abstractions
Compositional Analysis Using HARE

SATS: Small Airport Transportation Systems

- Each aircraft modelled as a rectangular hybrid automaton
- Abstractions involved variable dropping and scaling, location merging
- Abstract each hybrid automaton into a simpler one
- Decompose the counter-example and refine each of the abstractions

<table>
<thead>
<tr>
<th>Benchmark/Model</th>
<th>Concrete size (modes, variables)</th>
<th>Abstract size (modes, variables)</th>
<th>Iterations</th>
<th>Time taken (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATS</td>
<td>(100000, 5)</td>
<td>(3000, 5)</td>
<td>3</td>
<td>155.32</td>
</tr>
</tbody>
</table>
Conclusion & Future Work
Conclusion

- Time approximations are crucial for compositional approximation
- Bounded error approximation
- Software Tool: BEAVER (Bounded Error Approximation based VERification)
- Hybridization based Counter-example guided abstraction refinement
- Software Tool: HARE (Hybrid Abstraction Refinement Engine)
Conclusion & Future Directions

Conclusion

- Time approximations are crucial for compositional approximation
- Bounded error approximation
- Software Tool: BEAVER (Bounded Error Approximation based VERification)
- Hybridization based Counter-example guided abstraction refinement
- Software Tool: HARE (Hybrid Abstraction Refinement Engine)

Current and Future Work

- Extension to hybrid systems with more complex dynamics
- Non-linear hybrid systems, more complex interactions
- **Compositional Synthesis**
 - Generate multi-robot path plans compositionally from specifications
- **Compositional approaches for verifying robustness properties**
- Stability verification