Rapid Modular Software Integration (RMSI)

Adam Grimm
adam.grimm@kihomac.com
Overview

- RMSI Overview
- Future Airborne Compatibility Environment (FACE™)
- Analog Computer Rehost
- Integration of Modular Components
- Demonstration Setup
- Results

FACE™ is a trademark of The Open Group
RMSI Overview

- AFRL-funded initiative to demonstrate software compartmentalization using FACE™/ARINC 653
- A-10C test bed supports concepts for future sustainment-focused cockpit enhancement
- Rehosted flight critical alpha mach computer into common hardware with COTS moving map application and bad actor test software
- Created specification for new A-10 FACE™-based subsystem to support sustainment goals
- Integrated COTS processor box and COTS signal data converter into A-10 system integration laboratory

Successfully Demonstrated:
- Rehost of obsolete analog avionics
- Plug and play small software “apps”
- Reduce software integration and test
- Improved fault tolerance
- FACE™-based software compartmentalization provides a modular approach for new development and sustainment.
- "App"-like approach allows software module reuse and commonality across platforms.
- Major segments are time and space partitioned to ensure safe non-interfering operation.
- Reduces sustainment and development costs.
- Shortens software regression test cycles.

Analog Computer Rehost

- Rehosted A-10 alpha mach computer (AMC)*
 - Part of the secondary flight control system
 - Receives air pressure and lift data
 - Operates leading edge slats to improve high angle of attack airflow to engines
 - Provides engine and stall tones to pilot

- New system runs entirely in FACE™-based software architecture
- Created A-10 integrated FACE system (AIFS), a new A-10 subsystem
- AIFS provides an infrastructure for processing power and analog signal data for FACE™-conformant software modules on the A-10

Modular Component Integration

- Integrated “off the shelf” modular components to demonstrate interoperability of custom software with existing software from vendors.

- Added primary flight display to demonstrate possible solution to legacy gauge sustainment in a safety critical software environment.

- Off the shelf moving map component demonstrates enhanced situational awareness capabilities and support for new or enhanced software capabilities of AIFS.

A 2010 DoD Nunn-Perry Award Winner
Demonstration Setup

- Lab demonstration utilized existing A-10 system integration lab at Lockheed Martin-Owego
- Mixture of real and simulated hardware ensured aircraft representative operation
- Added “bad actor” components to demonstrate modularity
- Tested each component
 - Primary flight display
 - AMC rehost
 - Moving map
 - Bad actor

A/C: Aircraft
CADC: Central Air Data Computer
EGI: Embedded Global Positioning System Inertial Navigation System

A 2010 DoD Nunn-Perry Award Winner
Results

- Good demonstration. All components demonstrated expected results.
 - COTS components successfully executed in A-10 environment
 - AMC software met or exceeded performance of legacy hardware
 - Bad actor software did not compromise the integrity of safety-critical items

- Potential Way Forward:
 - Install AIFS on test jet to demonstrate system in operational environment
 - Rehost additional analog components into software
 - Integrate AIFS with A-10 sustainment roadmap for legacy systems

- Key takeaways:
 - FACE™ provides significant advantages to platforms in sustainment
 - RMSI work can transition to platforms other than A-10
 - Modularized, open architecture software allows multiple vendors to provide components with minimal interoperability concerns
 - Future systems benefit from a FACE™-based approach in terms of additional safety, reduced lifecycle costs and increased commonality
Questions?

A 2010 DoD Nunn-Perry Award Winner